
Opgui and OpenProg user’s guide

v.1.2
November 2014

This  document  refers  to  the  applications  called  OpenProg  and  Opgui,  used  to  control  the  USB 
programmer  called  Open  Programmer;  OpenProg  runs  exclusively  under  Windows 
(2000,XP,Vista,7,8), Opgui both under Linux and Windows (after installing the  GTK runtime  )  ; the 
ICD debugger and other functions are only supported in Opgui.
More info can be found on the project web site: www.openprog.altervista.org
From here on I assume that the programmer is working correctly and is recognized by the system. 
Every figure contains two screenshots, Opgui on the left, OpenProg (if available) on the right.

Step 1: connecting to the programmer
At start-up the applications search for a programmer and report the result:

  

If not found it’s possible to search again using  Reconnect in the  Options tab; this also resets the 
programmer.

  

Within  the  “Options”  tab  it’s  possible  to  change  the  VID  and  PID  codes  used  to  identify  the 
programmer; this is useful if the firmware was recompiled with different values than 0x4D8:0x100.
Log activity saves all USB packets exchanged with the programmer; it’s useful in case of errors.
Don’t require LV boards avoids checking for low voltage expansion boards.

http://www.openprog.altervista.org/
https://sourceforge.net/projects/gtk-win/


Wait for S1 before read/write starts programming when S1 is pressed; this can be useful in case of 
loose ICSP cables.
Max errors in writing is the maximum number of errors allowed before interrupting a write.
The hardware test is used to check the programmer itself; it should be executed at least once before 
using the programmer. 
At each step a message specifies what voltage should be present on various lines; if this is true then 
the circuit is working; all digital I/O lines are then scanned to check their functionality.
Chapter Most common problems lists some common errors that prevent correct operation.

Step 2: device choice
On tab “Device” you can choose the device you want to use, considering that:
PICs with suffix LF are the same as with F, e.g. 16F628 = 16LF628;
Atmel AVRs with various suffixes are grouped when they use the same algorithm, 
e.g. ATmega8A = ATmega8;
EEPROMs type 24xx and 25xx include all versions with VDDmax=5V, e.g. 242LC56, 24AA256, etc.
Some FLASH SPI memories are also supported; they require an expansion board to lower the supply 
voltage to 3.3V.
EEPROMs type 93xx require two different algorithms, one for 93S series and one for all the others, 
called 93x; 93xA series are the same as 93x but organized as 8 bit instead of 16.
Read and write EEPROM: use the internal EEPROM of some microcontrollers; an error message is 
generated if the file to be written does not contain any EEPROM data.

  

PIC Configuration
The various options are used only if supported by the device chosen.
Read reserved  area:  most  devices  have  a  memory  area  beyond Config  Words that  is  used  for 
production test data or calibration; this option forces a read of this area as well; on PIC24-30-33 the 
executive area is also read.
Write ID and BKosccal: write ID locations (address 0x2000-2003 for PIC16) and backup calibration if 
specified in the file (i.e. if < 0x3FFF).
Write Calib1 and 2: write calibration words 1 and 2 if specified in the file.
Write OSCCal: some devices (e.g. 12F5xx) store the internal oscillator calibration value in the last 
address of the program memory, and in some cases also in a backup location after the Config area; 
after device erase the calibration value should be written back; the options are: OSCCal, the original 



value, which was automatically saved before erase;  Backup Osccal, the backup location, if exists; 
From File, which writes what is specified in the file.
Force  config  word:  during  write  override  the  config  settings  present  in  the  hex  file;  values  are 
hexadecimal.
Enable ICD: write the address of the debugger routine; in order to use ICD it’s also necessary to 
enable the DEBUG bit  in  the Config Word and to include the debugger routine in the code;  see 
chapter Using the ICD debugger.

Atmel AVR configuration
Unlike PICs, these devices don’t map their configuration words on the program memory, so this info is 
not present in the hex file and has to be entered manually.
Write the hex value of config/lock bytes and check the “write” box.
It’s not mandatory to write all of the config locations, some of them may be fine with the current value.
More info on configuring the devices is present on the respective datasheet.
The CPU speed limits the communication speed to fCPU/4; the algorithm tries to find the highest 
speed possible; this of course influences the total read/write time.
In case of big devices it could be better to first change the CPU speed (by writing an empty file and 
setting the necessary Fuse bits) then write the final file and configuration.
Some  models  can  have  a  very  low  CPU  speed  (16  kHz),  which  cannot  be  matched  by  the 
programmer.
In these cases first use the command “Write Fuse Low @ 3 kHz” to set a different CPU speed, then 
write with the usual procedure.

Step 3: load a file (only if you want to write)
Hex files are supported for all devices; binary files for serial EEPROMs only.
In PIC devices the EEPROM area is mapped in the same address space as program memory, so they 
are both included in the same hex file.
For Atmel micros you need a separate EEPROM file (hex or binary, often with extension .eep).
After loading you can see the content of all memories, including config locations, on the “Data” tab.

  

Step 4: read or write to the device
Use the buttons in the tool bar:

   



During read/write  the  graphic  interface  does not  respond,  but  shows the completion status  as a 
percentage.
Press “stop” to abort immediately.
Total write time depends from the memory size, some seconds for 1KB, minutes for 128KB; often the 
microcontroller internal EEPROM has a higher cell write time than program memory but being small it 
does not slow too much the total operation; generally writing a small code on a large device takes little 
time.
Device erase, when necessary, is done automatically before write.
Also code verification is automatic; in some devices during write, otherwise after it; in any case the 
number of errors is shown at the end.
Errors relative to config words need some more explanation: usually not all bits are writable, some of 
them are fixed to 0; so if the word to be written specifies 1 a false error will be reported.
A frequent case is to write a program which was compiled for a different device, with different config 
bits.
You should always compare the specified config word with possible values in the datasheet to see if 
errors are real or not.
Reading is usually faster than writing; the device ID is read when available (on most microcontrollers).

Step 5: save a file (if the device was read)
Same considerations as step 3.
In case of microcontrollers the application does not save empty locations (with value ≥ 0x3FFF) when 
possible.

Other operations

Erasing a device
Every device is erased automatically before write; if you want to erase it manually it’s sufficient to 
write a hex file with valid data (<0x3FFF) beyond the memory space. 
For example, with PIC12-16:
:020000040000FA
:0144010000BA
:00000001FF
Or PIC18:
:020000040002F8
:020000000000FE
:00000001FF

Changing Configuration Word
It’s possible to override the hex file config settings using Force config word in the Device tab (opgui 
only, for PIC10-12-16-18).
Otherwise there are two methods:
modify the source code and recompile it;
modify  the  hex  file  directly:  on  a  PIC16  the  config  word  is  stored  at  address  0x2007,  which 
corresponds to hex address 0x400E.
The right line starts with “:02400E”; the last byte is the checksum, calculated as the two’s complement 
of the sum of all preceding bytes:
:02400E00XXXXYY with XXXX new value and YY checksum



For example if XXXX=0370   YY=-(02+40+0E+03+70)=-C3=3D

Verifying that a device is empty
It’s sufficient to read it and look at the data; only lines with valid data (<0x3FFF for PICs, <0xFF for the 
others) are shown; no data means that the device is empty.

Enabling access to the programmer under Linux
Under Linux the applications communicate through device /dev/usb/hiddevX (where X is the number 
assigned by the system to the programmer circuit); this file has to be readable so you have to change 
the “r” flag; for example in case of hiddev0:
> sudo chmod a+r /dev/usb/hiddev0
To  permanently  enable  a  user  you  can  do  the  following  (on  Ubuntu  and  other  Debian  based 
distributions, check for others):
as root create a file /etc/udev/rules.d/10-openprogrammer.rules
if you want to enable a user group write:
KERNEL=="hiddev[0-9]",  ATTRS{idProduct}=="0100",  ATTRS{idVendor}=="04d8", 
GROUP="<group>”, SYMLINK+="openprogrammer"
where <group> is one of the user groups (to get a list type "groups"); select a suitable group and if 
your user doesn't belong to it execute "addgroup <user> <group>"
or, if you want to enable all users, change reading permissions:
KERNEL=="hiddev[0-9]", ATTRS{idProduct}=="0100", ATTRS{idVendor}=="04d8", MODE="0664", 
SYMLINK+="openprogrammer"
restart udev to apply changes:
>udevadm control --reload-rules
>udevadm trigger
Now whenever the system detects the programmer, the corresponding /dev/usb/hiddevX will have the 
correct permissions, and a link /dev/openprogrammer will be created.
If after plugging-in the device you can’t find /dev/usb/hiddevX (and LED2 doesn't blink at 1 Hz), it's 
sufficient to execute a few times lsusb to force enumeration, or unplug and plug the cable.
If not otherwise specified the program looks for an USB device with vid&pid=0x4d8:0x100.

Using expansion boards
The basic programmer module can host PIC devices with up to 20 pins (5V power supply) and I2C 
EEPROMs; all other devices require additional expansion boards (see web site for details).
These are designed so that their expansion connectors align exactly with those on the basic module, 
so it’s possible to stack the boards and connect them vertically (this is why it is advisable to use 
female connectors on the basic module).

http://www.openprog.altervista.org/


Important!! Don't  use  3.3V  devices  without  the  3.3V  expansion  boards,  otherwise  permanent 
damage may occur; the software verifies that such adapters are present before starting to program, 
but obviously you need to select the proper device; the 3.3V devices are:
12F1xxx,16F1xxx,18FxxJxx,18FxxKxx,24Fxxx,24Hxxx,33Fxxx.
Some of them have 5V variants; if you need to program at 5V you can select Force config word in the 
Device tab (opgui only, for PIC10-12-16). 
Also don't put any 24F-33F on the 30F socket, which works at 5V.

Programming via ICSP
It’s possible to program PIC devices directly on the application board, using the ICSP (In Circuit Serial 
Programming) method; this requires five signals: VPP, VCC, PGD, PGC, GND, all present on the 
expansion connectors.
A dedicated ICSP connector is present on some expansion boards.
Note that the 5 pin connector on the basic module is called ICSP-IN, and is a slave ICSP port to be 
used to program the main microcontroller from outside.
In order to ensure correct operation it is advisable not to load too much the ICSP lines (with capacitive 
or  static  loads);  application  boards  often  have  jumpers  to  isolate  the  ICSP  signals  during 
programming.
Keep  in  mind  that  the  maximum  current  flowing  through  VDD  is  in  the  order  of  200-300  mA; 
exceeding this value will lower the power supply voltage and cause a programmer reset.

Using the ICD debugger
On Opgui exclusively is present an “ICD” tab, which allows operating the in-circuit debugger for PIC16 
devices supporting this feature.
As with ICSP programming it’s necessary to connect the standard five signals from programmer to 
application board; however this time VDD is optional, as the application circuit can also work with its 
own power supply,  provided it’s  the same as the one from ICSP (i.e. 5V or 3.3V if  using a 3.3V 
expansion board).
During a debugging session the device jumps to a particular routine,  called debugger function or 
monitor, whenever a halt condition is encountered; this routine then communicates with the host and 
performs all kinds of debug operations.
Some preliminary steps are necessary before starting a debug session:

• compile/assemble  the  application  program including the  debugger  function  in  one  of  two 
ways:

a) insert the debugger asm code directly in the main code, starting in the final part of 
program memory; a directive ORG 0x1F00 is required before the debugger function 
code, which means it’s starting 256 words from the end of 0x2000 word devices; use 
ORG 0xF00 for  those  with  0x1000 words,  etc.  Debugger  variables  are  stored  in 
registers 0x6B-0x72, so make sure the main program does not use them.

b) include the precompiled module  debugger_mon.o and a corresponding linker script; 
the module has to be added to the “Object files” in an MPLAB project; the linker script 
is a modification of the standard linker found in the lkr directory under MPASM; it’s 
necessary to add a code page for the debugger code (at 0x1F00 for 0x2000 word 
devices, at 0xF00 for 0x1000 word devices, and so on): 

CODEPAGE NAME=pageICD  START=0x1F00   END=0x1FFF
SECTION NAME=ICD      ROM=pageICD     // ICD routine

It’s also advisable to shorten the preceding page to 0x1EFF in order not to overlap 
with pageICD.
These modifications are similar to what Microchip does for its own debugger (look at 
the first part of the standard script, between #IFDEF _DEBUG and #ELSE), just with 
a different name for the debugger code page.
If really short on program memory it’s possible to move the new page towards the 
end, keeping at least about 165 words for the debugger code.



To prevent  using  the  debug memory  locations  (0x6B-0x72)  it  would  be better  to 
shorten the available memory sections:

DATABANK   NAME=gpr0     START=0x20     END=0x6A
SHAREBANK  NAME=gprnobnk START=0x73     END=0x7F

Anyways, make sure not to use locations 0x6B-0x72 in the program.
Other development environments need about the same steps described before.

• Enable the debugging bit in the configuration options:
__FUSES (…) &_DEBUG_ON

• Use NOP as the first instruction at address 0 (so before the usual goto main).
• In the programmer software enable option ICD on the “device” tab and set the correct address 

for the debugger routine (i.e. the starting address of pageICD, see above); in this way the 
device will jump to the debugger routine when a halt condition is met.
It’s  sufficient  to  do  this  once,  because  the  ICD  address  is  not  erased  during  normal 
programming.

• Finally write the compiled program (which now contains also the debugger function) on the 
device.

At this point it’s possible to connect the programmer to the application board via ICSP connector.
The “ICD” tab contains all the debugger controls:

The “Source” pane shows the disassembled code around the current execution address; the other 
pane the overall execution status and other data.
A nice feature is the possibility to use the real source file; this is possible after loading the .coff file 
generated  by  the  compiler;  this  file  contains  the  definition  of  all  variables  used  and  the 
correspondence between memory line and source line.

Press “go/continue” to start; the device will exit reset state and stop at address 1; the execution 
status is updated as well as the source code (or the disassembled code if no .coff file was loaded).

Press “step”  to execute one instruction at time; to do the same but jumping over calls press “step 

over” .

Press “Go/continue” again to run code at nominal speed, until “halt” is pressed.

“Stop”  resets the device and turns off the power supply.
Going step by step to the point of interest may be too long; in this case it’s useful to use a breakpoint; 
just double click on the line you want to stop at (a message will  appear on the status pane), and 
restart execution with “go/continue”.
The device then executes its program at nominal speed until the program counter matches the break 
address; after completing the current instruction it jumps to the debug routine; this means that it stops 
after the break address, which has to be considered when breaking before or after a function call.
A variable’s value is displayed double-clicking on its name in the source pane (only after loading a 
.coff file); the value will be updated throughout the debug session; double click again to remove it.



Using the “Options”  button it’s  also possible to display an entire bank of  memory or the internal 
EEPROM. 
Some other interesting functions are available through the command line (on the ICD toolbar); other 
than basic commands (run, step, step over, halt, stop) there are:
break, to manually set a breakpoint;
print, to show variables, registers, locations in RAM, program memory, or EEPROM;
watch, to display variables at every step;
freeze, to stop peripherals like watchdog and timers when the device is halted;
help, to list all commands;
To change the value of a variable or memory location write:
variable=x
e.g. PORTB=1F
or: 0x23=FF

To test the debugger you can download the  example project; it’s compiled for the 16F873 but it’s 
adaptable to any other device; it contains also the source code for the debugger monitor and the .o 
module described above; a recompilation is required to update file paths in the .coff file.
A more technical explanation of how the debugger works can be found here.

Communicating via I2C and SPI
The I2C/SPI tab allows to communicate with generic I2C and SPI devices.

  

I2C
Select the I2C mode between 8 bit and 16 bit, and speed between 100kbps and 500kbps.
“Bytes to send/receive” are the effective data bytes; every transfer needs also a control byte and an 
address byte, or two address bytes when in 16 bit mode; the RW bit in the control byte is handled 
automatically.
So for a read you put two or three bytes in the “data to send”; for a write the same two or three plus 
the data bytes to be transferred.
Not specifying anything equals to writing 0 in the relevant bytes.
An acknowledge error is shown in case the slave device is missing or does not respond.
For example in order to write 5 bytes on a 24xx16 memory at address 64 you select 5 bytes to 
send/receive and write: A0 40 1 2 3 4 5
To read from the same locations only the first two bytes are considered.

SPI
Select the SPI mode between the four standard modes and speed between 100kbps and 800kbps, 
then read or write.
CS (RB3) is high during every transfer.

http://www.openprog.altervista.org/pdb_eng
http://sourceforge.net/projects/openprogrammer/files/ICD/debugger.zip


Controlling I/O lines and power supplies
Using the  IO tab it’s possible to control interactively all I/O lines, the two power supplies, and the 
DCDC converter; all options should disabled before programming a device.

When Enable IO is checked every line can be driven high, low, or in high impedance (i.e. an input); 
the input value is refreshed every 100ms.
VDD and  VPP control  the  same  signals  on  the  programmer;  DCDC turns  on/off  the  switching 
regulator and sets the voltage as specified (from 5 to 15, although the regulator may not be able to 
generate exactly that value).

Verifying or generating a hex file line
The Utility tab allows to verify or generate a line from a .hex file.

Hex>data extract address and data from a hex string; data>hex does the opposite.
The hex string can be saved to a file.

Changing the user interface language
It’s possible to change the language of Opgui using some command-line options:
-langfile generates the string file languages.rc; this file contains all the strings and an ID for each of 
them.
Translate all strings to your language and rename the session (the name is at the beginning enclosed 
in square brackets []).
If languages.rc is found and there is a session named like the system language ID (e.g. en_en for 
English), it will be automatically selected; otherwise use option: 
-lang <language> to manually choose the language.

It’s possible to change the language of OpenProg user interface by selecting it in the Options tab; the 
application comes with English and Italian strings.



In order to add more it’s necessary to first generate the file languages.rc, choosing Write language 
file.
Translate all  strings as described above; the session name will  then appear among the language 
options.

Sending commands to the programmer
With Opgui you can manually send an USB packet with a command sequence to the programmer:
-command [commands]
The packet is filled with 0 to the final size (64 bytes).
The response packet will be also printed.
A detailed description of all commands is available on the project website.

Most common problems
Description Cause and solution
HV regulator error DCDC regulator components of wrong value or not correctly 

mounted.
Synchronization error with 
Atmel AVR

Device mounted on the wrong socket; common error: ATtiny2313 
has to be mounted on the 28 pin socket.
Serial download not enabled on the device: enable it using a parallel 
programmer.
Serial download cable too long: use a shorter cable.
Not all power supply pins are connected: connect all of them.
Pin X2 fixed to GND: release it.

PGD (RB5) not working during 
hardware test

Main microcontroller not correctly programmed; usually this comes 
from using the LVP option while programming.

Programmer not detected, 
LED2 blinks quickly

Reset during USB enumeration.
10µF capacitor not mounted or of incorrect value.

VUSB < 4.5V error Anomalous power consumption on VDD, check the transistors.
The USB Hub may be overloaded: disconnect all other devices.

3,3V regulator not detected The device selected requires an expansion board with a 3.3V 
regulator. Note that the expansion is needed if any of the device 
variants require 3.3V; e.g. 16F1936 (5V) vs. 16LF1936 (3.3V).
If you are sure to program at 5V you can skip the check with Don’t  
require LV boards.

All Hardware test errors Shorts between traces or open traces: check the PCB.

If you have doubts or suggestions you can contact me at


	Step 1: connecting to the programmer
	Step 2: device choice
	PIC Configuration
	Atmel AVR configuration

	Step 3: load a file (only if you want to write)
	Step 4: read or write to the device
	Step 5: save a file (if the device was read)
	Other operations
	Erasing a device
	Enabling access to the programmer under Linux
	Using expansion boards
	Programming via ICSP
	Using the ICD debugger
	Communicating via I2C and SPI
	Controlling I/O lines and power supplies
	Verifying or generating a hex file line
	Changing the user interface language
	Sending commands to the programmer

	Most common problems

